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ABSTRACT. 

An experimental method was developed to compare strain dat~ for rock 

and rock bolts when ·exposed to shock waves released by blasting.. Dur-

ing a 32-day period of experimentation, one rock sensor and four rock-

bolt sensors were observed simul tane9UJSly. By their placement in the 

side wall of a structurally stable drift, aecondary static stresses were 

ex.cl uded.. Bolt gage .response_s, then, could be considered to originAte 

only from a decay of anchorage stability during static conditions or ae 

a reaction to the vibrations. 

Interpretation of test results indicated a distinct loss in bolt-

strain during vibrations, accompanied by a smaller but steady loss of 

bolt-strain during static conditions. The strain losses were found re-

lated to the shock-source distance, the vibrational amplitudes in rock 

and bolts; and ;to the relative magnitude o.f vibrational energy in the 

two media. 
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INTRODUCTION. 

Rock-bolts are used to stabilize hard-rock structures by binding 

se~tions of rock to each other. They have played an essential role in 

mine-support for about the past 15 years. Because any load acting on 

the bolt will have to be transmitted tlu:"ouqh the anchor· to the · support

ing rock, the placement of the bolt throuqh the anchor-mechanism is of 

critical importance for successful application. 

1 

At present, knowledge of rock-bolt anchorage stability is extremely 

limited since little information on the subject has been published. 

Thill. is especially true for vibrational loading conditions which have 

frequently been assumed to cause loosening of the anchorage. Uncer

tainty in this respect creates a risk in many cases of bolt application .. 

The present investigation was undertaken to gain knowledge of the 

influence of vibrations on the bolt-anchorage. Several recording tech

niques have been developed recently to define dynamic material-behavior. 

They have been utilized to develop an experimental method for the obser

vation of bolts exposed to vibrations in natural mine rock and to produce 

experimental data that allowed quantitative correlation. 
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THE TESTING AND THEORETICAL CONSIDERATIONS OF ROCK BOLTING 

A. Present Status of' Investigations. 

The development of a number of different bolt and anchor types (1, 

2, 3, 4) has made it possible to utilize rock bolts in a variety of 

rock-types and support problems (2 through 13). an ~xtensive litera-

ture search revealed that little effort has been made to study and . . 
analyze the anchorage mechanlszns., although many publications deal ex

tensively with bolting effects in mine structures. 

In consideration of test methods and pertinent equipment, anchor-

age response to dynamic loads, e.g., those from blasting and similar 

vibrational or impact-type stressing, has received only slight atten-

tion by investigators. The main concern of work done has not gone be-

yond static ·bolt-load capacity and static anchorage-characteristics • 
. ' 

For this purpose, several testing methods were developed that allow 

experimental determination of index data. One of these was described 

by Stefanko (1) as a dynamic test, but should be more appropriately 

termed a Pull Test. 

To conduct a Pull Test, a bolt is pulled by an axial force until 

its measured displacement becomes excessive (i.e., when either a com

plete, or a certain,defined anchor slip takes place without a corres-

ponding load increase), or until the bolt material fails. The force 

measured at thi& point is taken as characteristic for the anchorage 

capacity. The relative simplicity of the equipment used and perfor-

mance achieved has made it frequently used, beinq recommended as a 

standard method by the Commdttee on Roof Action of the American ~ninq 

Cortqreo Cl<i). Th:e· liMt:hod's practical i.mp)rtance lies in the ability 
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to test anchorage efficiency as well as the influence of shell design 

and rock~material characteristics. 

3 

A second test method, also frequently employed, involves observa

tion of the load loss of a bolt over a relatively long period of time, 

details for the performance of which are described in a number of pub

lications (1, 3, 9, 10). The test considers the fact·that shortly 

after installation, bolts exhibit a "bleed off" of load, presumably 

caused by slippage of the anchor due to deformation of the rock mate

rial when exposed to high stressing. The deformation characteristics 

of rock materials, the forces involved, and the size and design of bolt 

anchors strongly influence the test results which are presented in the 

form of a plot of load versus time. Since observations of the subse

quent long term-behavior are of no less importance, especially for de

termining the relative stability of permanent-support structures, it is 

advantageous to combine this test with other types of measuremenfs. 

The latter measurements would involve those of convergence, roof sag, 

swell, etc., which can contribute much to establishing a more complete 

picture of the structural performance of an entire rock-bolting system. 

As load-indicating devices, relatively slow-response load cells are 

used most often in experiments. However, other devices mi~ht also be 

applied. For example, a variety of bonded, electric resistance-wire 

strain-gages are available for measuring strains induced in materials. 

Strain gages exhibit advantages over many of the other load measur

ing devices becaus& of their high sensitivity and immediate response to 

strain changes. They are bonded directly to the investigated member, 

require little space, and exert practically no interference with the 

·rea:ctldtt of the tested maiaber. Strain qaqes have been most successfuil. 
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in measuring dynamic responses to vibrational and impact stressing. 

Therefore, one would assume they could be used as an appropriate de-

vice to investigate the anchorage stability of bolts wnen they are 

exposed to dynamic loads. 

B. Rock Bolt Mechanisms. 

1. Purposes and Functioning of Rock Bolting. 

Rock bolts are applied in mine support to prevent strata separa-

tion and roof sag, to increase the effective strength of roof strata 

_4 

and rock zones immediately surrounding openings, to stabilize pillars 

and walls, to prevent rock falls, and to suspend or hold support-

members and machine elements in place. The basic principles of appli-

cation are outlined in the various publications mentioned earlier and 

need not be discussed in detail. However, the success achieved in all 

types of bolting is basically dependent on the degree with which the 

acting load can be transmitted to the bolt head, then along the bolt 

shank to the anchor elements, and lastly, into the rock at the anchor 

site (Figure 1). 

For the two types of bolts customarily used, e.g., wedge and 

expansion-shell, the element with the most uncertain'function is the 

anchor. Wedge-type anchors establish coupling with the borehole wall 

by the relative movement of the axially slotted end of the bolt a~ainst 

a simple wedge positioned in the slot at the end of the borehole. As 

the bolt is driven axially into the borehole, the wedge is forced into 

the slot, separating the two half-sections of the bolt-end and compress-

ing them against the borehole wall. A strong joint is formed that can 

be releallect:o on1Y ,by material failure. Expansion-a-hell type, anchors 

alao function by wedo'e action but as a result of :bolt rotation. The 
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6 

wedge and an outer expansion-shell for.m the primary anchorage elements. 

The wedge~ are equipped with an axial bore that is threaded, which in 

turn, is screwed on the threaded end of the bolt. As the bolt is ro-

tated, the wedge moves axially toward the head of the bodt, at the same 

time expanding the leaves of the constraining shell. The shell is 

prevented from axial movement by v.arious design techniques (1, 2, 6, 8, 

10, 11, 14, etc.). Serrations on the outside of shell leaves of vari-

ou~ ·for.ms are manufactured to per.mit applications in a wide range of 

rock types. 

For all kinds of anchors, stress interactions with the rock mate;- .. 

iialare quite complex, and investigations of anchorage behavior would 

require complicated analysis techniques. However, of the various com-

po~ent parts of a bolt, the shank represents an element of such singu-

lar importance to the mechan~sm that the · tension acting in it could be 

taken as possibly characteristic of the performance of the entire bolt 

under load. One would expect that a change in bolt tension results 

most probably from anchorage disturbances, if the acting load at the 

bolt-head remained primarily unchanged. 

2. The Mechanics of Anchorage. 

To allow deeper insight into anchorage-stability conditions when 

using expansion-shell type anchors, an evaluation of forces and stress~ 

es induced into the rock by the anchor would be fundamental (Fig. 1). 

According to equations developed from basic laws of mecranics by De La 

Cruz (18), the radial force, Pr, acting from an anchor into the rock 

can be expressed as a function of the axial force, P, acting along the 

bolt shank, and of the desiqn characteristics of the anchor elements 
;·!-.'if;. (:~,. ~d ~ .,.- :·-- ' 

: .. . tt-Y { ~n; . !~ "~s {o~~?ws (see .Appendix I for a complete list of symbols): 
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·pr = P(1 ~~w s) / n{Jiw + s). 

In tti•fn, the magnitudes of the · axial force in the anchor, Pa, and the 

counter-acting . normal and shear stresses in the rock, 6 r and t' a' 

respectively, would be related to the radial force, Pr, simply as 

follows: 

Pa = Pr P.r' 

6'r .. - Pr/A, 

La = Pr ftr/ A, and 

Ta • -6r JAr• 
According to the equations, a force acting axially along the bolt 

could be translated directly into terms of stress created in the rock 

at the anchor site. The stres.ses could be determined for any given 

set of conditions. For example·, let it be assumed that a Pattin D-3 

two-leaf expansion-shell anchor were used. In this case, the anchor 

specifications would be n = 2, JAw = 0.25, ~r = 0.35, s = 0.14, and 

A= 0.49 ~n.2, the latter value of which would be w~ere only the edges 

of serrations make contact with the rock. If the applied load, P, 

7 

1. 

2. 

3. 

4. 

s. 

were 4000 lb., then from Equations 1, 3, and 5,the stresses in the rock 

could be calculated as follows: 

6r = -Pr/A =- (PCl-j'ws>] /(nA {f!w + s>J , 

and 6r = - [4,000(1 - 0.25 X O.l4U I [2 X 0.49 (0.25 + 0.14)] , 

or Gr --10,000 psi. 

Also, '[ a --6rJAr =- (-10, 000) ( 0.35), 

or fa -3,500 psi. 

Logically, .as th• area, A, of contact increases, the stresses would be 
,, 

expected ·t~ decrease proportionat~ly. Also, on the assumption the 
t . 

elastic : limits of the bOlt mater~ale and the rock are not exceeded, a _., '• .• 
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strain observed in the bolt shank could be translated directly into 

strairi resulting in the rock. 

Since the same applied load exerts stresses to both the anchor in 

the hole and on th~carrier plate at the bolt-head, the. stress condi-

tions at the plate location are also of interest. For example, if one 

were to assume a 6-inch square carrier-plate in contact with the rock 

for only 10 per cent of its area, due to roughness of the rock's sur-

face, then Gr would be only 1100 psi, since 6r = -P/A = -(4000)/ 

(0.10 x 6 x 6). A,s also for the anchor, greater contact area at the 

carrier plate would reduce the stress magnitudes in the rock. 

The stresses at the anchor site determined by Equations 1 through 

5 assume that the rock provides sufficient strength in the elastic re-

gion to withstand the contact stresses and to hold the anchor in place 

without suffering deformation • . Since the calculated stresses represent 

avtuage stress values, peak stresses much higher than those .no doubt 

would occur. Because rocks are composed of several minerals with vary-

ing strengths, it would be very unlikely that under isuch conditions no 

deformation would occur. In addition, the stresses at the anchor COI\;;_ .. ,.,. 

tact could be of magnitudes that, for many cases, would be close to or 

above the rock stren<;Jth. Therefore, the conclusion could be drawn that 

the effective stresses at the anchor site normally would be far more 

critical than those at the bolt head. Thi.s consideration supports the 

frequent explanation that failure in rock-bolt action results at the 

anchor rather than at other points. 

3. Effects from Vibrational Stressing. 

-In addition to ·static stresses, rock bplts often are subjected to 

8 
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vibrational types of stressing. Strains from this type of stress could 

be induced by impact loads such as those from blasting. ~eir influ-

ence on the anchorage mechanisms is not known but it has long been 

thought that the effects could be detrimental to the extent that an-

chorage stability might be disturbed (16,17,18). 

Measurement of strains in rock from stresses produced from impa~t 

loads has been successfully accomplished by Duvall, Obert, Quan, and 

many others (19,20,21,22). It was shown that although very high 

strains were produced near the source of impact, strains in the rock 

at distance were greatly decreased in magnitude. This was because the 

stresses were weakened by energy absorption, divergence, and scattering 

effects as they were propagated out and away from the source. 

Unlike the effects produced from statically imposed loads, the re-

suiting strains from impact stressing exhibit a vibratory character. 

The action is similar to that from seismic waves, with the energy being 

transmitted in a form consisting of a series of strairt pulses. Of the 

kinds of strain pulses, the compressional pulse is generally stronger 

and travels the faster, as it is from one and one-half to two times the 

velocity of the transverse or shear P\\_lse. Thus, the compressional 

pulses would be the first to encounter any point of contact between the 

rock and a bolt, to be followed later by the transverse strain pulses. 

Seismic pulses characteristically are reflected and refracted at 

materials' interfaces, scattering the original energy by generating 

new. pulses at each di~eontinuity (23). Of the original pulse-energy, a 

portion is transmitted into the bolt at the points of contact, part is 

reflected,> ~~/ <thtnuqh .the, rock <(Fiq. ·2); 4nd some may be consumed in 

the form of l~Qrk that may occur. Work: ' lost at iqteifaces could go intc) 
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deformation and fracturing of the mineral components making up the rock. 

Because rock bo1 ts .provide basically only two points of contact with 

rock, i.e., at the anchor and at the carrier plate, high strain condi

tions most likely wo~ad be developed at both those locations. The vi

brational strain would be superimposed on the static strains already 

existing at the bo1 t site, .so that the add! tion to the existing strain 

condition could cause rock rupture or deformation not previously expe

rienced. 

As one would suppose, a mathematical analysis of conditions at the 

anchorage points would be extremely complex, and simple engineering so

lutions at the present state seem almost impossible. Since it is not 

known of what nature the vibratory behavior of rock and shell at their 

contact might be, it appears feasible to begin an investigation of sta

bility conditions by experimental observation of such phenomena. Pro

viding the anchor is in intimate contact with the rock, vibrational en

ergy introduced into the anchor should be transmitted to the shank. Ac

cording to this assumption, one could postulate that strain changes oc

curring in the shank of a bolt result from processes going on in the 

rock and at the rock-to anchor interface. Thus, their magnitude and 

character can be expected to contain some indication of effects occur

ring at the points .of contact. 
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EXPERIMENTAL WORK. 

A. Instrumentation. 

In consideration of the reports on the successful observation of 

rock vibrations by Quan (21), the U.S. Bureau of Mines (20), and py the 

reconunendatipns £or the use of electric resistance-wire strain-gages 

(9, 10, 22), a technique was· developed for observing the simultaneous 

vibrational behaviour of rock bolts. It was designed to utilize equip

ment proven to be reasonably reliable under conditions of the test site 

and to allow fast operation with high sensitivity in data production. 

In these respects, full advantage was take~ of equipment designed by 

Qu~ndu. ring similar investigations at the same test site, with certain 

modifications incorporated in the basic circuitry to accomodate more 

channels and. robk-bolt strain measurements. The complete test equip

ment, as shown schematically in Fig. 6, was composed of four basic units: 

a set of test rock-bolts, a strain sensing and transducing system, photo

graphic cameras for data recording, and a shock initiation source with 

appropriate firing and synchronizing trigger-c~rcuit. 

1. ··Test Rock-Bolts. 

In order to provide results with the most practical value, standard 

expansion-shell type rock-bolts were selected, with dimensions in the 

range of those most frequently employed in industry (see Appendix III). 

A special steel disc was attached between the bolt heads and the carrier 

plates to decrease frictional resistance to rotation at their contact. 

This arrangement was used to increase the efficiency of torque transmis

siort ·to the thread durinq installation. The bolts were further equipped 

fl'th ' 'Strait\ gages as dea!ctil:.ct t.low. -· 
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2. Strain Sensing and Transducing System. 

a. Strain-Sensors. To permit observation of both static and 

dynamic strains in bolts, and also in the surrounding rock, two types 

of sensor units were built: 

(1) Rock-Sensors. Based on reports describing similar 

work (20,21,27), the wave form to be observed was assumed to be a 

plane wave. It was decided to record only the longitudinal component, 

since development of transversal vibrations was not expected. Thus, 

it was considered satisfactory to mount a single strain gage in the 

rock medium. To assure uniformity of gage properties throughout the 

experiment, SR-4 type isoelastic resistance-wire gages were used. 

They were bonded to the base plane of a cylindrical core extracted 

from the rock at the test site. The procedure followed in manufactur

ing of the units was described in detail by Quan (21). The design of 

the rock-sensor and the associated electrical transducer-circuit are 

illustrated in Fig. 3. 

(2) Bolt-Sensors. Difficulties had to be overcome in 

the proper placement of strain-gages on the bolts and in the building 

of attendant circuitry (see Appendix II). The design found to be the 

most reliable was similar to that developed by Stefanko and De La Cruz 

(1). At each bolt four strain-gages were installed to function as one 

sensor unit, whereby gages were grouped into the circuit of a Wheat

stone Bridge (Fig. 5). Because of the close arrangement of the sensi

tive elements, disturbing influences were excluded to a high extent, 

e.g., electronic noise, humidity, temperature, capacity variations, 

and differences in conductor length. The gages were bonded with com

mercial du Pont Duco Household Cement to a properly prepared·space on 

the surface of the bolt shanks. They were protected from humidity by 
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the application of an epoxy coating and shielded electronically by a 

wrapping of copper foil. 

15 

Because of the geometric configuration (Fig. 5, Fig. 6), simul

taneous compensation of differences in temperature and bending strains 

was possible. Positioning of the gage units at a distance of 12.0 

inches from the bolt head was felt adequate for the purpose of pro

viding enough space for coiling a sufficient length of conductor cable 

between gages and the bolt head. Coiling of the cable around the 

shank prior to installation was necessary to provide sufficient slack 

for it to unwind during rotation of the bolt. 

b. Conductor Cables. Nine feet long, shielded four-conductor 

cables served as permanent conductors at each bolt. They were clamped 

with wire to the bolt shank on one end and equipped with a four-pin 

male cable-connector on the other end, to fit the receptacles on the 

strain indicator. The cable shielding was welded to the bolt shank 

for proper grounding. 

For the connection between the bolt-gage cables and the recording 

instruments, which were installed in a surface building at some dis

tance from the immediate test site, five 250-ft. long shielded two

conductor cables were used. Because of the different electrotechnical 

role of the gage bridge in the oscilloscope circuitry, only two con

tacta to the gage bridge of a bolt were necessary. Thus, the positive 

and the negative conductors of the cables were connected to only the 

power contacts, B and C, of a gage bridge. To provide a completely 

shielded circuit, the cable shield was connected at one end to the 

bolt shank and at its other end to the shell of the cable connector. 

To match the male four-pin connector at the bolt-cables, the 250-ft. 

caples were equipped with corresponding female four-pin connectors 
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of which only pins B and C were soldered to the two conductors of the 

cable. On the recording-equipment end of the cables three-pin micro

phone connectors were mounted to fit the receptacles of the transducer 

input units. In the case of the rock-sensors, the same type of two-

conductor. cab.les was used. However, three-pin microphone connectors 

were fixed on both ends, in much the same manner as was done in Quan's 

experiments (21). 

c. Transducer Input Units and Preamplifiers. Before the 

output from the bolt and rock sensors could be fed into the oscillo~ 

scopes, they had to pass through a signal modifying system consisting 

of transducer input units and preamplifiers. The role of the trans-

ducer input units was two-fold: to supply the strain gages with a rated 

amount of current, which had to carry the signal output, and to trans

form the signal consisting of a resistance change, ~R; into a voltage 

change, d.£, for delivery. to the preamplifiers. Five input units, Tek-

tronix Brard, were employed (Fil,T. 6 and Plate I) • Their operating pow-

er was provided by 90-volt dry-cell radio batteries, from which a cur~ 

rent of 25 rna was fed into each strain-gage circuit. 

More for the purpose of noise filtration and control of band width 

than to amplify the signals, one low-level preamplifier (Tectronix Type 

122) was connected in the circuit between the transduc&r input units 

and the oscilloscopes. They were operated by D.C. power, utilizing 

6-volt automobile .batteries for the A supply (filaments), 135-volt 

radio batteries for the B supply (plates), and 90-volt radio batteries 

for the C supply (bias ) • 

Altheugh adequate oscilloscope sensitivity was available, the pre

~i:l.fiers· 1fttre >oP!tnt4td · on · a lOD-fold amplification to exploit their 
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PLATE I 

Recording Equipment at the Observation Stand. 

CTransducer Input Units and Preamplifiers in Steel-closets 
at Left. Oscilloscooes and Came1"i'IR at Riaht.) 
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full filtration capacity. Bandwidths were set between 10,000: and. 80 

cycles, since this range was expected to contain most of strain wave 

frequencies (21). The amplifier outputs were fed directly into the 

osci-lloscopes. 

21 

d. Oscilloscopes. Three cathode-ray oscilloeodpes were 

available for simUltaneous o~servation of individual strain-gage sig

nals. They included Tectronix Types 533, 502, and 535 A. The latter 

two were equipped with dual-trace plug-in units, so that a total of 

five traces was available fo~ simultaneous use, A number was assigned 

to each trace, together with i t·s corresponding transducing circuit and 

strain sensor, in order to designate each of the branches as a channel. 

Power for the oscilloscopes was supplied from a 110-vo1t power source. 

Sensi ti vi ty ranges and sweep rates of the oscilloso0pes wer• similar 

to the ones described at length by Quan (21) for the Tectronix Type 502. 

e. Static-Strain Indicator. For observing the static loads 

present in the installed rock-bolts, a Hathaway Model SR-20C strain 

indicator was used. It contained 12 channels for simultaneous use in 

the observation of several strain-gages. It functioned on the basis 

of a 1-kc carrier wave, whereby disturbances from electronic noise 

were excluded to an extent below the instrument's accuracy. For the 

particular type of strain-gages used, a compensating 158-ohm resistor 

was inserted in the rear panel, according to the Instruction Manual. 

A sensitivity of ± 0.1 microstrain in the range from 0 to 1,000 micro

strain and of ± 10 microstrain in the range of 1,000 to 20,000 micro

strain assured hiqh accuracy in the .observation of bolt behavior. 

3. Photoqraphic ·Recorders. 

Bec&"U;M of the very short time interval of wave passaqe throuqh 
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the sensors and the need for permanent records, visual observation of 

trace developnents on the oscilloscope screens had to be excluded from 

consideration. Three Polariod camerae, each mounted on one of the 

oscilloscope screens recorded the events on Type 47 Polaroid film. 

The high sensitivity and speed of the film allowed inspection of pic

tures within 15 seconds after exposure, which in turn permitted prompt 

adjustment of testing procedures when required •. 

4. Shock Source and Triggering-Circuitry. 

Since blasting is the most frequent cause of vibrations in mining 

operations, single unit~n~rges of ex~osive were selected as a stand

ard for vibration generation. Due to the need for a relative large 

number of tests under reasonably unchanged conditions, the explosive 

size had to be restricted so that a minimum of fracturing damage would 

result to the rodk. Therefore, each explosive unit was made up of two 

1-1/4 x 8-inch cartridges of Atlas Gelodyn No. 3, containing a total 

charge weight of 0.9 lb. 

Atlas instantaneous No. 6 electric blasting caps were used for the 

initiation of charges. A D.c. firing current was supplied from a con

denser-type blasting box mounted on the oscilloscope stand (Fig. 6 and 

Plate I). To synchronize the sweep of the oscilloscope traces with 

the detonation of each charge, a wire sling w~s taped around the pri

mer cartridge. A -90-Volt potential was applied to this sling for the 

purpose of blocking the trigger system of the oscilloscopes. Rupture 

of the sling by the explosive's detonation removed the blocking voltage 

and released the sweep of the os-cilloscope :beaJns-. The voltage for the 

triqqer system was supplied from the condensor box • 



www.manaraa.com

23 

B. Test Procedure. 

1. Concept of Experimentation. 

In principle, the concept of the experimental investigation was 

to find from a series of rock bolts installed in natural mine rock 

whether or not, and to what extent, bolt tensions would be influenced 

when the bolts were exposed repeatedly to shock waves released by 

blasting. For this purpose, it was felt necessary to simultaneously 

observe the extent of rock vibration through the strain-gage equipped 

rock-core grouted into the rock -. A comparison of the two types of 

data, from bolt and rock vibration, should lead to quantitative con-

elusions for relationships between vibrational characteristics, geo-

metric configuration, and anchorage stability. 

2. Selection of the Test Site. 

It was intended that influences from structural conditions on data 

to be recorded, e.g., from roof sag, strata separation, load trans-

position, etc., would be minimized by mounting the bolts in a mech-

anically stable section of underground rock. With regard to the add-

itional advantages of easy access and ventilation, as well as of con-

stant temperature conditions (temperature readings remained in the 

range between 60.5 and 6l.o•F), a part of the NE-drift in the Experi-

mental-Mine of the University of Missouri at Rolla was chosen (Fig. 7 

and Table 1}. Bolts and rock-sensors were installed in the side wall 

of this drift (Plate II). A further reason for selecting of this par~ 

tbular location was the proximity of the test site recently used by 

c. K:. Quan,. where rock:.sensors were still in place. It was intended 

to recheck the functioninq of these devices and to compare their output 

:with that of the ••nsors used in ~his inveatioation. 
' 
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Table 1. 

Physical and Petrographic Properties of the Mine Rock (21). 

Phy~ical Properties: 

Spe<;;1.ific Gravity ....... -· . •.·-• ...................... . 
Porosity ....... ·-.. • ........................... ,. .. . 
Ratio of Absorption .............................. 
Weight per cu. · ft • .............................. 
Tensile Strength ................................. 
Crushing Strength ....... , ....................... . 
Modulus of Elasticity •••••••••••••••••••••••••••• 

Modulus of Rupture ••••••••••••••••••••••••••••••• 

Longi tudi na 1 Velocity ••••••••••••••••• • • • • • • • • • • • 

Petrographic Composition (Average): 

Dolomite •••••••••••••• -· •••••••••• loa ••••••••••••••• 

Calcite ......................... ' ................ . 
Quartz, Chert, Limonite, Pyrite, Clay •••••••••••• 

2.8 qm/cc 

13.0 '1o 

5.3 

152.2 lb 

220.0 psi 

8476.7 psi 
9161.0 psi 

(on bed) 
(on edge) 

3.5 x 106 psi 

1, 000 psi 

17,300 ft/sec 

20 '1o 
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3 • Installation of the Rock-Sensor. 

After response of the rock-sensor was chec~ed in the Laboratory, a 

NX-size ~rehole of 5-ft. depth was drilled slightly inclined downward 

into the side wall of the drift. For installation, the device was 

placed first into the bottom of the hole and then rotated into a posi

tion, such that the mounted strain-gage was most sensitive to horizon

tal strain components. A steel pipe was then pushed into the hole be

side the conductor cable. A Hydrostone slurry was mixed in a weight 

ratio of 45 percent water and 55 percent Hydrostone and filled into a 

plastic-bag. This was subsequently attached tightly around the end of 

the steel pipe extending out of the borehole .. By squeezing the plas

'tic-ba.g manually, 'the conta'ined slurry was deliver~d through the steel 

pipe to the bottom of the borehole. While the slurry was enclosing 

the rock sensor and filling the borehole, the steel pipe was gradually 

removed. Displace~nt of air from the hole was accomplished by keeping 

the bottom end of the pipe in constant contact with the slurry accumu

lated in the hole. Because of th~ inclination of the hole axis, e.g., 

-5 degrees, the slurry was prevented- from flowing out before solidifi-

cation. 

4. Installation of Rock-Bolt Sensors. 

Prior to installation, a calibration test was conducted on each 

rock bolt to provide a basis for the strain readings during experimen

tation (Appendix III). It is interesting to note that the strain val-

- ues observed were higher than the values computed theoretically. Each 

bo~ t was coordi:r;\ated with a channel of the strain indicator, and the 

qag•- bJ"idQ'e was. balanc~. so that a zero strain reading at the indica tot 

w•e;"~~v•l.~m.t 1!9 a :•eJ'C .strcain (and a sero load) . on the holt. The 
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balance controls _of each channel were seal~ off by adAesive tape to 

prevent changes of the correlation base during the period of experi

menting. 

For each bolt the conductor cable was wound around the bolt shank 

between the gage position and. the carrier plate in the form of 16 to 

18 loops, to allow for length compensation during the rotation neces~ -. 

sary upon installation. Furthermore, where · physically needed, small 

notches were chiseled into the rock at the borehole edges to allow the 

cable to slide in and out between the . carrier plate and the roei: face. 

The bolts •re anchored by:. rotation with a manually-operated wrench, 
. . 

at the same time being continuously connected w:i.th the static-strain 

indicator to permit control of the · load increase (Plate II). All bolts 

were loaded to 700 microstrain, which Was considered equivalent to a 

4000-lb. axial· load. 

In those cases where bolts hadto be removed from the sequence of 

tests the anchor was left in the borehole. upon reinstallation it 

could be used again without difficulty. 

5. Configuration of Blastholes and Sensor Units. 

The relative positions of the rock bolts, rock~sensors, and shock 

sources are illustrated in .Fiq. a. While the rock bolts (BB-I, BB-II, 

BB-III, and SB-IV) were kept in their respective positions (Hl, H2, and 

. H3 ) through several sequences of testing, the boreholes for the explo

sive charqes, (BH-I, BH-II, BH-III, and BH-IV), were used alternately. 

This was done in order 'to vary the travel distance from ·the shock 

source to each individual bolt. A listing of the various testing com

binations of charge and sensor position~ for the individual blasts is 

given in Table "*·• In addition, the rock-sensors ~, B, and C used by 
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PLATE II 

Static Strain Reading at the Test Site. 
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Table 2. 

Survey of Test Con1bina.tions Between Bolt Sen!!ors, 

Rock Sensors, .and Blastholes. 

Shot Rock Sensors Position of Shotholes used 
Nr. Observed Bolt-8ensots 

If! · . H2 H3 BH-I BH-II BH-III BH-IV 
Designation of Bolt-

Sensor Obaeried 

1 RG-I B:B-;.1 BH-II 
2 RG-I B:B-;.I BH-II 
3 RG-I B.:B-;.I BH-III 
4 RG-A RG-I BB-IV -aB-II BB-I BH-III 
5 RG-A RG-I B:B-;.IV B:B-;.II B:B-;.I BH-III 
6 RG-A RG-I BB-IV BB-II BB-I BH-III 
7 RG-A RG-I BB-IV BB-II BB-I BH-III 
8 RG-A RG-I BB-IV BB-II BB-I BH-III 
9 RG-A RG-I BB-IV BB-II BB-I BH-III 

10 RG-A RG-I BB-IV BB-II BH-I 
11 RG-A RG-I BB-IV BB-II BH-III 

12 RG-A RG-I BB-IV BB-II BH-I 
13 RG-A RG-I BB-IV BB-II BH-II 

14 RG-A RG-I BB-IV BB-II BB-III BH-III 

15 RG-A ·RG-I BB-IV BB-II BB-III BH-I BH-III 

•16 RG-A RG-I BB-IV BB-II BB-III BH-I BH-Ir BH-III 

17 RG-A RG-I BB-IV BB-II BB-III BH-I BH-II BH-III 

18 RG-A -RG-I BB-IV BB-II BB-III BH-II 

19 RG...A RG-I BB-IV BB-II BB-III BH-II BH-III 

20 RG-A RG-I BB-IV BB-II BB-III BH-II BH-III 

21 RG ... A RG-I B~IV BB-II BB-III BH-II BH-III 

22 RG-A RG-I BB-IV BB-II BB-III BH-II 

23 RG-A RG-I BB-IV BB-II BB-III BH-II 

24 RG....A RG-I BB-IV BB-II BB-III BH-II 

25 RG-A RG-I BB-IV BB-II BB-III BH-II 

26 RG-A RG-I BB-IV BB-II BB-III :Efl-I 

27 RG-A RG-I BB-IV BB-II BB-III BH-III 

28 RG....A RG-I BB-IV BB-II BB-III BH-I BH-III 

29 RG-A RG-I BB-IV BB-II BB-III BH-IV 

30 RG-A RG-I . BB-IV BB-II BB-III BH-II BH-IV 
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Quan in previous experiments (21) are shown. 

6. Data Recovery. 

31 

As the instrumentation system was designed, two devices for reading 

strain-data were available: a strain indicator for static conditions 

and the oscilloscope-camera arrangements for the vibrational phenomena. 

Thus, very close observation of the sensors was - possible by reading 

the static strain on the rock bolts when installed, just before each 

blast, immediately thereafter, before dismounting, and after complete 

removal to check for residual strains. During each blast, the respons

es from both the rock and bolt-sensors on the oscilloscope screens were 

photographed. Time of exposure, scale illumination, and intensity of 

the oscilloscope traces were adjusted by trial incorder to produce use

ful photographs. 

Oscilloscopes were turned on before each test series and checked. 

To avoid time delays due to warm-up and special adjustments as may be 

required, oscilloscope ·power remained on throughout each test series. 

After installation of bolts to the desired amount of strain, the test 

procedure sequence included the following steps: 

a. Record temperature, time, and strain on each bolt immedi

ately before a blasting event, and then reconnect all sensors with the 

oscilloscope circuitry through the coordinated cables. 

b. Tape trigger-sling to explosive primer-cartridge, insert 

blasting cap, and then load charge into blasthole, with suPsequent con

nection of trigger cable to the sling and blasting cable to the blast~ 

ing-cap leg-wires. Remove strain indicator from the area. 

c. Turn on power to transducer system, preamplifiers, and 

triQO•r circuit. Check functioninq of oscilloscopes (trace-sensitiv-
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ity, sweep, trigger action, ~perage of transducer circuit, etc.). 

d. Charge hlastin9' 1condensor and open all camera shutters. 

32 

Initiate explosive charge by closing blasting-circuit, and promptly 

close camera shutters after blast. Record time and attitude of oscil-

loscopes. 

e. Shut off power to trigger circuit, preamplifiers, and 

transducers. Remove exp()sed photographs fromoeune~a• after allowing 

15 seconds for complete development. 

f. Connect strain-indicator channels to proper bolt seneors 

and record static-strain readings and time. 
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DATA INTERPRETATION AND RESULTS 

~. Nature of Recovered Data. 

A total of 48 test shots ~a~ perfo~ed for this investigation. No 

useful data were produced from the first 18 shots, because the recording 

equipment had to be adjusted and an unsuccessful bolt-sensor design was 

employed (see Appendix II). Of the remaining 30 test shots, 8 compris

ed rtml tiple arrangements utilizing standard charges distributed in 2 to 

3•blastholes (see Table 2). The purpose of using mill.tiple charges was 

to observe whether a different pattern in sensor respon.se would result 

from several simultaneously released shots. No useful data became read

ily apparent and thus, records of those shots were omitted from inter

pretation. The remaining 22 shots, which used single standard charges, 

were made in the sequence and the configurations as listed in Table 2. 

Data from the latter tests provided the basic source of experimental 

info~ation. 

Static strain measurements yielded direct numerical values. The 

readings ranged from 700 microstrain (4000-lb. setting load) to 439 

microstrain . (at the end of the last test-shot series and equivalent to 

a 2500-lb. load). The dynamic observations were recorded in the fo~ 

of 66 photographs, yielding a total of 90 usable oscillograph traces 

(Plate III). Each trace had to be interpreted for its strain indica

tion. This was accomplished first by measuring the recorded peak am

plitude of the compressive-strain deflections in centimeters (see Fig. 

9)~ By use of the recorded operating data of the transducing equiP

ment (Appendix V) each amplitude value was then converted into te~s of 

microstra.tns (Appenclix VI). Interpreted traces included 19 from Rock-
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Sensor RG-I, 17 from Rock-sensor A installed by C. K. Quan, and 54 from 

the various ~lt-sensors. There was a large scatter of data in certain 

cases, proba~ly due to interference between shock waves in the rock me-

diurn. 

The positions of sensors and blastholes were located by use of a 

surveying tape to an accuracy of ± 0.1 ft. Time was read from a wrist 

watch at the instant of each even~, exact to full minutes. 

B. Interpretation and Piscussion of Results. 

Static strain readings are compiled in Appendix IV, together with 

their recorded times of observation and the instants at which blasts 

were made. The particular blastholes charged and the photographs ob
' 

tained from each event also are included. 

The readings of the peak amplitude from each of the photographed 

traces are listed in Appendix VI for the rock sensors and the bolt-sen-

sors, along with the identifying numbers of the pertinent blasts. The 

numerical values for the strain deflections were determined from the 

traces by use of the operating data shown in Appendix V. 

For the interpretation of data, the following points were considered: 

a. The consistency of response from tests performed under equal 

conditions, 

b. The trend of the strain loss in bolts for the total experi-

ment and for single tests, 

c. The influence of absolute bolt strain on the strain loss, 

d. The influence of wave travel distance and of its intensity 

,on the strain loss, 

e. The relationship between vibrational responses of the rock 

~d ,the bc>lts, and 
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PLATE III 

Sample Trdces of Rock-Sensor Vibration (above) and Bolt
Sensor Vibration (below) Taken from Shot No. 12. 
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f. The relationship between vibrational energy and the strain 

loss in bolts. 

1. The Consistency of Sensor Response Under Equal Testing Condi'

tions. 

37 

The "equal donditd.ons", mentioned here as a reference for compari

son of sensor responses, must be understood as a term with restricted 

meaning. This is because actual testing conditions could be kept con

stant only with respect to the geometry of the sensor and blasthole po

sitions and the size of the explosive charge employed. 

The entire experimental investigation extended over a period of 32 

days. Test shots could be made only when operations in the mine and 

the investigator's occupation would allow it, so that an adjustment of 

the testing schedule to favorable conditions was impeded. 

Testing conditions with inconsistent character included the natural 

creep of the anchor during static loading conditions, which effected a 

continuous decrease of bolt load, and strain losses from the vibration

al influences during blasting. Although it would have been possible to 

reset each bol:t to the original setting-load after each test shot, it 

was ~referred to allow the bolts to react freely during the complete ex

periment in• order to closely approach practical conditions. 

Another variation was introduced by the change of the blasthole size 

and shape due to repeated blasting, so that confinement and energy trans

mission decreased with each additional blast. In close conjunction with 

this, the rock medium effectively suffered changes in wave conductivity. 

Not only the propagation of single waves but, especially, the interfer

ence of several waves .with each other were believed of very inconsistant 

nature, so that a large scatter of data was created,. 
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Also, variations in moisture present in the mine rock could not be 

controlled because of the shallow mine openings and the long period of 

observation. 

Because of the influences resulting from changing environmental con

ditions, it was essential to inspect each data group derived from ap- 

proximately equal test conditions, for agreement between values, so that 

possible relationships between different groups might be determined. 

2. Strain-Time Relationships. 

A graph of strain-time development is given in Fig. 10 for each of 

the bolts employed. The plots indicate the significant influence of 

vibrations. It presents the static strain readings taken before each 

test series and after its completion (see Appendix IV). Readings taken 

between the subsequent blasts of a series are omitted. Only the quan

tity of blasts performed in each of the series are indicated on the 

graph. Since the plots had been established neglecting variations in 

blasthole positions their validity must be restricted to a range of tra

vel distances varying within an accuracy of ~ 6 ft. for each of the 

bolts considered. A discussion of the influence of distance on the 

strain decay will follow in a later section. 

The observation times of the bolts were resolved into two parts: 

the intervals during which they were exposed to vibrations, and the in

tervals of constant load conditions. Summing up the strain losses of a 

bolt during all of the observed vibrational part-times and dividing by 

the cumulative sum of recorded part-times within which the vibrations 

occurred, a ratio of strain loss per unit time was obtained. The ratio 

~e~resented the over-all decay qradient of the actual bolt strain durinq 

Jnemdc tests. An equivalent ratio was also set up for the periods of 
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static load conditions. Numerically, the decay rates were ectual to the 

following values: 

a. Vibrational Periods: 0.10 to 0.20 microstrain/minute, or an 

average of 0.16 microstrain/minute, for 4 bolts exposed ~ 30 test-

shots. 

b. Constant Load Periods: 0.98•10-3 to 8.2~·10-3 microstrain/ 

minute, or an average of 4.48vlo-3 microstrain/minute, for 4 bolts. 

c. Ratio of Average Decay Rates (average from a. divided by 

average from b.): 0.16/0.00448 = 36. 

The decay rates for the individual bolts are shown in Fig. 11. 

Although data for the graphs were affected by variations in geo-

metric configuration and conditions of environment, they indicate that 

a distinct, unifor.m stability change occurred fram static to vibration-

al loading conditions. With respect to the particular way data were 

recovered, it can be concluded that actual decay rates for vibratd.onal 

part-times would have had much _ higher values than the ones calculated 

above. This is because the recorded vibrational part-times spanned 

several minutes before and after each blasting event. Thus, the data 

exaggerated the events which actually took place within a few seconds 

or fractions thereof. The true reference times for the decay gradient 

could not be observed because of the short time intervals covered by 

the oscilloscope traces. Also, this deficiency in dynamic recording 

was held responsible for the failure to observe actual strain loss from 

the oscilloscope traces. 
'· 

3. Strain Loss and State of Strain in Bolts. 

From the collected data, the extreme values with respect to the 

amount of strain loss per event were selected to dete.rmine the range of 

influence. The maximum strain loss encountered was 100 microstrain at 
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Table 3. 
· Computation of Percent Strain-Los• for the·. Bolt Sensors. 

c:: • ,....,. 
~ ~C::+' ,-,1 IC::+' r-f ~ .. C::+' 0 0 ....,. :z; rtl c:: ....,. c:: cdC:: c:: c:: ...... c:: CS. C:: c:: ...... c:: 

:;1-~ 
....,. 

~. Ill ~ "'"....,. ....,. 
-;11D@l ....,. "'" "'" -;11D ~ 1-f.J l'fJ ID ~~ ~5 +ICS 

~= ~· 8 +' ....... . 1-i 1-i Ill · ~ 111 H HIDH -..41-i HID H 0 'C:: ...... +' 0 +' 0 Ql C::+l +' o· t1 C::+l +'0 +',SQI s.s ..c: HCIJ C/J....:I Cll....:IP. HCI) CQ....:I Cl) ...:IP. HCI) C/l....:l C/J p. C/J 
Bal t BB,..I Bolt BB-II Bolt BB-IV 

BH-II .· 1 . 674 16 2.38 
BH-II 2 658 13 1.98 
BH-II 13 465 5 1.08 640 3 0.47 525 2 U.3~ 

avera.sze: 1.81 
Bolt BB-III 

BH-II 18 108 3 0.42 587 10 1.70 
BH-II 22 687 12 1.75 516 10 1.94 
BH-II 23 657 15 2.28 470 9 2.13 492 7 1.42 
BH-II 24 642 18 2.80 461 7 1.52 485 5 1.03 
BH-II 25 623 14 2.25 448 5 1.12 476 2 0.42 

average: 1.90 average: 1.48 averave: 0.81 

Bolt BB-I Bolt BB-II Bolt BB-IV 
BH-I 10 52,5 4 0.76 651 l 0.15 
BH-I 12 ,470 5 1.,.06 642 2 0.32 526 1 0.19 

average: 0191 
Bdlt BB-III 

~I 26 609 6 0.99 443 4 0.90 474 4 0.84 
average: 0,99 average: 0.45 a.ver&ges 0.52 

Bolt BB-I Bolt BB-II Bolt BB-IV 
BH-III 3 645 14 2.17 
BH-III 4 612 36 s.88 684 12 1.76 667 15 2.25 
BH-III 5 570 10 1.75 669 4 0.60 645 4 0.62 
BH-III 6 560 9 1.61 665 6 0.90 641 1 0.16 
BH-III 7 5:51 6 1.09 659 2 0.29 640 5 0.78 
BH-III 8 545 l8 3.30 657 4 0.61 635 2 0.32 
BH-III 9 527 2 0.38 653 2 0.31 633 3 0.47 

averasze! 2.:u 
Bolt BB-III 

BH-III 11 647 3 0.46 528 2 0.38 
BH-III 14 · s93 9 .1.30 629 5 o.8o 
BH-III 27 603 4 0.66 439 4 0.91 470 9 1.91 

aTeri!szes 0!98 averages 0.74 a.veraszes 0.86 
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an initial bolt strain of 630 microstrain (3,600 lb. load), which in 

percent of bolt strainwas 15.87 percent. The minimum strain loss en

countered was 0 microstrain, which occurred at initial bolt strains of 

517, 505, 496, and 470 microstrain (2,900, 2,830, 2,770, and 2,620 lb. 

loads, respectively). 

In no case was complete anchorage failure observed during the ex

periment. In two cases an increase of strain of 4 and 1 microstrain 

occurred at bolt strains of 515 and 705 microstrain, respectively. 

The behavior of the bolts, as shown in Fig. 10, indicated that a 

change of the decay rate with time occurred. The strain tended to de

crease as time increased. Because of the inexact role of time as a 

quantity for correlation, the state of strain appeared as the more ap

propriate basis for derivation of a relationship. Therefore, the strain 

loss was expressed as a percent of the state of strain at the start of 

each event. Initially, a plot was drawn for each bolt to inspect the 

data output from shots made at equal distances. The data points showed 

such an irregular scatter that no relationship could be detected. There

fore the plots were excluded from this thesis. 

In order to find the region of strain loss occurring most frequently, 

a frequency distribution curve was established for the overall experi

ment, which indicated strain losses in the range from 0.25 percent to 

0.50 percent as being the most frequent (Fig 12). It shows that there 

was only one shot which had a strain loss over 3 percent. The graph was 

drawn using data from all events for bolt- sensors without distinguishing 

between different travel distances or bolt str.ains. It is valid, there

fore, only for the total range of test configurations used. 
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Table 4. 

Tabulation of Frequency for Classes of Percent Strain-Loss. 

Class Number of Percent of Cases 
("/o) Cases ( "/o) 

o.oo 4 7.14 
0.001-0.25 3 5.36 
0.25 -0.50 12 21.43 
0.50 -0.75 4 7.14 
0.75 -1.00 8 14.28 
1. 00 -1.25 5 8.93 
1.25 -1.50 2 3.57 
1.50 -1.75 4 7.14 
1.75 -2 .• 00 5 8.93 
2;.00 -2.25 4 7.14 
2.25 -2.50 2 3. 57 
2.50 .:...2.75 0 o.oo 
2.75 -3.00 1 1.79 
3.00 -3.25 0 o.oo 
3.25 -3.50 1 1. 79 
3.50 -3.75 0 o.oo 
3.75 -4.00 0 o.oo 
4.75 -5.00 1 1.79 

Total 56 100.00 

Table 5. 

Strain-Loss Values from Table 3 Rearranged for Plotting in Fig. 13. 

Distance from Average Strain- Number of Shots Blasthole Bolt-Sensor 
Shot (ft.) Loss ("/o) Counted 

10.2 1.81 3 BH-II BB-I 
10.2 1.90 5 BH-II BE-III 
13.2 1.48 6 BH-II BB-II 
14.0 0.91 2 BH-I BB-I 
14.0 0.99 1 BH-I BE-III 
16 .. 6 0.81 4 BH-II BB-IV 
19.3 0.45 3 BH-I BE-II 
21.8 2.31 7 BH-III BB-I 
21.8 0.98 2 BH-III BE-III 
22.4 o. 52 2 BH-I BB-IV 
24.2 0.74 9 BH-III BE-II 
27.8 0.86 8 BH-III BB-IV 
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4. Strain-Loss Distance Relationships. 

To show the influence of geometric configuration the data have been 

separated into groups of constant configuration. As a measure of con

stant configuration the travel distance from the shock source to the 

bolt position has been used. From the average values of the data groups, 

a graph was plotted where the relationship between strain-loss and trav

el distance was shown (Fig. 13). It was noticed that a much greater in

crease of strain loss occurred for shock sources within 15 ft. from a 

bolt position. 

5. Comparison of Strain Loss and Vibrational Behavior . 

Scanning the data in Table 3, a rather high scatter of values was 

evident. The reason for this might well be due to changes of coupling 

conditions for the explosive, because of alterations in rock conditions 

around the blastholes or in interference phenomena between vibrations. 

To better show the trend of the data, a rearrangement had been made. 

As an expression of the response intensity of bolts two different quan

tities were chosen: the vibrational peak strain and the strain loss in 

percent. Plots were made with respect to the travel distance in Fig. 14 

and Fig. 15 (see data in Appendix). In addition, a graph was plotted 

containing the vibrational peak strains observed from the rock-sensors 

(Fig. 16). In all three figures the data points are designated by the 

shot number to which they belong. Thus, a comparison was possible be

tween the effects of any test shot on several sensors. 

The data distribution in Fig. 14 and Fig. 15 at a travel distance 

of 17 ft. suggests there was a minimum influence on recorded peak ampli

tudes and strain losses of bolts. For both increasinq and decreasinq 

travel distances, the peak strain-amplitudes of bolts increased and 
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scatter of data points became ·qreater. Aa is obvious from Fig. lo, the 

effects did not occur for the rock sensors. It would appear then, that 

the rock vibrations did not reflect the effects on the strain loss as 

distinctly as did the bolt vibrations. 

The peak amplitudes of rock vibrations were at high multiples of 

those for bolt vibrations. The divergence of the responses indicated 

incomplete transmission o·f the vibrations from rock to bolts, possi-

bly because of partial rock failure or relative movement at the contact 

points. Sinoe yielding at the carrier plates was improbable, and un-

screwing of the bolts was not observed, losses in bolt strain must be 

attributed to- displacements of the anchors. 

6. Relationships Between Vibrational Energy and Anchorage Stability ~ 

The strain loss of a tensioned bolt is a transition from a higher 

potential state to a lower one. To contribute further to an understand-

ing of the anchorage. failure, the phenomanon of strain loss was invest-

igated with reepect to certain energy quantities. Based ori the nature 

of this experiment, values for both the energy of bolt vibration and 

rock-vibration were derived from the oscilloscope traces.. From the peak: 

strain-amplitudee (Appendix VI), the peak energies of vibration were cal-

culated for each event. For computation the following formula was used, 

which was derived from laws of elastic vibration (24, 25, 26): 

6. 

where E is the vibrational energy, Cp is the peak strain-arnpli tude, and 

S ie the eo-aa.lled Spring stiffness. The .fonnula was applied for deter

mininq the vibrational energy transmitted·· through a unit volume of the 

medium at any particular instant of time. For calculations, the unit 
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volume of a cylinder with a 3/4-in. diameter and a l-in. length was 

selected as a constant reference. This shape and size was chosen to 

conform with the dimensions of the bolts used. The values of the Spring 

Stiffness were computed for this body from the elastic properties of 

steel and rock under the assumption of ideal elastic behavior. The 

exact procedure for the numerical evaluation is shown in Appendix VII 

and VIII. As a first step, the energy of rock vibration was determined 

for the positions of the bolt sensors by use of the extrapolated strain 

data (Appendix VII). 

The vibrational energies of the bolt sensors were found directly 

from the peak strains determined from the pertinent oscilloscope traces. 

They are listed in Appendix VIII. Both groups of data did not allow 

recognition of significant features by simple inspection. For correla

tion, an empirical curve was estaPlished, as shown in Fig 17. The ratio 

of vibrational energy in the rock divided by the vibrational energy in 

a bolt was selected to express the degree of enerqy transmission at the 

anchor. ~he ratio was plotted against the corresponding strain-losses 

in percent. The graph indicated a distinct increase of strain loss with 

increasing energy ratio, following an exponential relationship. It was 

interesting to observe that the values of vibratory energy transmitted 

to the bolts were at fractions of approximately 1/10 to 1/350 of the 

vibrational energy occuring in the rock. This also represented an in

dication of the discontinuity of motion at the bolt-to-rock contacts. 
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Table 6. 

Energy Ratios (Er/Eb) as Detennined from Appendix VII and VIII. 

Shot No. Blasthole Bolt-Sensor Positions 
Hl 

,.H 
2 H3 

3 BH-III 5. 57 
4 BH-III 151.00 113.50 
6 BH-III 140.00 78.80 3.20 
7 BH-III 284.00 204_.00 20.70 
8 BH-III 1150.00* 49.80 5.84 
9 BH-III 5.80 

10 BH-I 51.00 33.90 o. 49* 
11 BH-III 559.00 414.00 17.50 
12 BH-I 182.50 73.30 2 .. 05 
13 BH-II 284.00 395.00 6. 59 
14 BH-III 108.10 93.60 
18 BH-II 128.50 253.00 520.00* 
22 BH-II 79.20 119.50 213.00 
23 BH-II 349.00 339.00 2600.00* 
24 BH-II 425.00 579.00* 515. 00* 
25 BH-II 823.00 3380.00* 2180.00* 
26 BH-I 267.00 24.30* 19.70 
27 BH-III 2.52.00 79.30 420.00 

Note: * indicates data omitted from interpretation be
cause of extreme magnitudes. 

Table 7. 

Average Energy Ratios and Corresponding Average Strain-Losses. 

Travel Distance Average Strain-
(ft.) Loss ("/o) 

10.2 1.76 
13.2 1.55 
14.0 0.94 
16.6 0.95 
19.3 o. 44 
21.8 1.89 
22.4 0.52 
24.2 0.74 
27.8 o. 50 

Energy Ratio 
Average 

348.1 
276.1 
166.8 
244.8 

53.9 
213.1 
10.9 

129.1 
79.7 

53 
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CONCLUSIONS AND RECOMMENDATIONS. 

A. Conclusions. 

Summarizing the results of the entire experiment, the following 

conclusions can be drawn: 

1. A natural decay of the bolt strain occurred during periods of 

static loading, similar to long-term creep. 

2. Shock waves affected the stability of bolts by inducing an 

abrupt drop in strain and long~term creep continued after blasts. 

3. All observed bolts reacted to vibrations with a strain loss. 

55 

4. The amount of strain loss varied directly with the intensity of 

the shock waves but varied inversely with the travel distance of waves. 

5• Under the test conditions, percent strain-loss was greatest 

when the shot distance was less than 15 ft. 

6. A complete failure of anchorage under the test conditions did 

not occur, but yielding at the anchor-to-rock contact was indicated. 

7. In the majority of tests the percent strain-loss was less than 

1 percent and was rarely over 2 percent. 

8. Measurement of bolt vibrations provided a better means to pre

dict anchorage stability than did measurement of rock vibrations. 

9. Rock bolts showed little promise for success as a tool to ob

serve dynamic rock behavior. 

10. The vibratory energy observed in bolts was only l/10 to l/350 

of the vibratory energy observed in rock. 

B. Practical Significance of the Investigation. 

From Stehlik's (27) investigation of rock bolt stability under dy

namic condi tionsperformed at the White Pine Mine, White Pine, Michigan, a 
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decay of stability, and failure in some instances, of bolts was report

ed. Due to limitations imposed by production requirements, it was not 

possible to ascertain c~rrelations between losses of anchorage and the 

vibrations released by blasts. It was thought that the activity of tec

tonic rock stresses and artificially induced stresses in mine rock might 

well have contributed to the observed effects, possibly by establishing 

stress conditions that were Qlose to exceeding anchorage-stability lim

its. The results from this present study confirmed that there could be 

detrimental effects from vibrations on bolt stability. Thus, Stehlik's 

hypothetical explanation for those instances in which yielding occurred 

without horizontal shifting of the roof strata appears to have consider

able merit. 

1. Aspects of Large-Scale and Multiple-Charge Blasts. 

Although an explosive charge-weight of only 0~9 lb. as used in these 

studies, was not comparable in size to that commonly employed in most 

mining operations, the vibrational characteristics of the blast waves 

would be indicative of those that could be expected from a larger sized 

charge. In general, shock wave intensities vary as the cube root of t he 

ratio of charge weights. For a charge weight of 8 lbo, represent ing the 

average explosive charge for an 8 to 10 ft. blasthole, the intensity of 

the wave generated would be at least double that produced from the 0.9 

lb. at an equal travel d i stance. Increased hole depths and mul t iple 

charges fired simultaneously would greatly intens i fy the effects. 

For a series of multiple charges it also could be expected that in

terference of the several wave trains would result in either cancella

tion or fortification of vibrations. The same effect could occur at 

the intersection of wave fronts produced at points of petrographic dis

continuities. Thus, certain blast configurations would seriously affect 
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anchorage stability to the danger point, or for some cases, bolts 

could remain unaffected within a critical proximity of blasts. 
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2. The Influence of Overburden Depth and Stress on Sensitivity to 

Vibrations. 

Bolt loads and the state of rock stress in this investigation had 

been well below those values common to most mine support conditions. 

Based on theoretical considerations (see Chapter II, Section B. 2), bolt 

stability would approach a critical state as the acting load increases. 

Also, most active stresses within a rock body as found at depth will in

crease a bolt's sensitivity to vibrations. This is because rocks exhibit 

the general tendency to became more rigid and absorb less shock wave 

energy as depth increases. Thus, the combination of possibly increased 

stress conditions, better susc~ptibility to the propagation of vibra

tional energy, and the likelihood of tectonic activity at depth could 

present serious problems in the maintenance of proper bolt anchorage. 

3. Effects Due to Bolt Position Relative to the Direction of Wave 

Propagation. 

As the experiment was performed, no variation of the wave propaga

tion direction relative to the axes of the bolts was attempted. In all 

tests, the bolts were exposed to waves propagated perpendicular to the 

bolt axis. This is believed to represent most field conditions, since 

the majority of rock bolting is utilized in stratified rock, where the 

bolt axis lies perpendicular to the stratification. 

It is assumed that a wave travelling parallel to strata planes will 

cause primary dynamic strains in the direction of stratification. Sec

ondary strains will develop across the strata in accordance with the 

rock's characteristic Poisson's Ratio. The resulting swell, or 
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contraction of strata, is believed to act on the· bolt in the form ofan 

addition of active stresses. Wave fronts propagated directly parallel 

with the bolt axis should cause maximum strains to result transverse 

to the rock: stratification.. The structural configuration for this form 

of incidence necessarily would exist when waves are released in mine 

levels above the bolt site, or at a distance in the direction of strat

ification where the shock: energy is transmitted by multiple reflections 

at strata interplanes. In most of the latter cases, the wave intensity 

at the bolt site will be some fraction or multiple of the original in

tensity, and their influence would be difficult to estimate. According 

to some of the data (Fig. 15 and Fig. 16) obtained in this investiga

tion, even feeble rock: vibrations occasionally initiated large losses 

in bolt strain. 

A high sensitivity to axial straining is indicated from the mech

anical principles of anchorage, especially when considering the stress 

distribution around the contact of individual serrations of the anchor 

shell (18). This feature suggests that shocks propagated parallel to 

the bolt axis, despite their greater losses of intensity during pTopa

gation, ~ffect bolt stability perhaps more seven3ly than shocks moving 

perpendicular to the bolt axis. 

4~ Feasibility of Bolt Retightening. 

Generally, it is impossible to eliminate vibrations in mine struc

tures and imprudent to avoid rock bolting in influenced zones. Bolts 

with expansion-shell type anchors allow simple retightening of the wedge 

assemblies, so that each original bolt load can be reestablished as 

long as the rock: and bolt remain intact. The systematic performance 

of such retightening appears feasible to limit damage to boltedmine 
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structures. Work: by Stefanko indicated that retightening· of bolts in

creased their long-terrnstability. 

During events that loosen anchors, a destressing of the rock com

pound and dislocation of rock: sections takes place. It seems improbable 

that such alterations can be completely corrected by retightening of 

bolts, because of the limited forces transferable through rock boltsc 

On the other hand, retightening inhibits continuation of the failure 

process and increases structural stability in most conditions . It is 

believed that even better anchorage stability could be reached through 

the resetting, because an adjustment of the borehole wall to the shape 

of the shell surface is expected to take place during vibrational peri

ods. This is because a better form_ fit and a better stress distribu

tion at the contact will be reached on retightening • . 

C. Recommendations for Further Investigations. 

A continuation of studies on rock: bolt behavior during dynamic 

loading is recommended to solidify the gained experience and to further 

clarify the relationships indicated by this investigation. Future tests 

should be conducted in a rock: which is more homogeneous to reduce the 

scatter of data. Wi t h more f avorable r ock properties, it is suggested 

that a rock-sensor be placed in the immediate proximity of a bolt

sensor, so that it comes within the stress field induced by the bolt's 

clamping action. The rock-sensor, t hen, can be expected t o yield bet

ter data for comparison with the bolt response. 

From theoretical considerations, it would appear that sensitivity 

to vibrations should be highest for a configuration on which wave fronts 

are propagated parallel t o t he bol t ax i s. An invest i gat ion of t his pro

blem could provide valuable data toward improvement of rock bolting 

practices. 
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Also, there is a wide field open for investigations on anchorage 

stability at various levels of bolt setting-loads, blast intensities, 

travel distances, and at various arrangements of multiple charges and 

delay t ime.s. 
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A greater demand will be placed on the recording equipment as fut

ure testing projects ~come more complex or more specializ~d. Even for 

the type of observation performed, it was found preferable to employ 

more highly developed equipment than was available. In particular, 

recorders that function on optic or electromagnetic principles with 

gradually adjustable recording speeds and recording times allow suit

able adjustments for the complete ~:C'?J::ding of individual events. If 

equipped with a large number of channels, they could produce a greater 

data output. Thus, a better comprehension of the nature of shock waves 

~ould be possible and a greater number of data for statistical treat

ment would become availabl e. 

Model studies of the character as reported by Hartman and Tanda

nand (28), which permit continuous observation of dynamic phenomena 

occurring at the anchor- to-rock contact, would be most beneficial in 

developing terms of highest informative value and for directing fur

ther investigative steps. 
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APPENDIX I 

LIST OF SYMBOLS .. 

P • ••• Force acting axially along bolt shank (lb.). 

L •• • • Force acting on carrier plate {lb.). 
r 

Pa •••• Force developed by rock to maintain equilibrium with the 

forcer P, exerted by the bolt {lb.). 

r a • • • • Axial shear stre.se acting on leaf-rock interfa~ ' (psi). 

6'r • • • • Radial normal strees acting on leaf-rock interface (psi). 

~ • ••• Friction coefficient at wedge-leaf interface {constant). 

• • . . Friction coefficient at leaf-rock interface (constant). 

(3 • • • • Angle of wedqe slope (degree) • 

s •••• Slope of wedge, equal to tan~ (constant). 

A • • • 
2 • Area. of contact between sum of leaves and rock (in.. ) • 

n ... • Number of leaves. 

3rl • • • • Static normal stress acting on anchor in radial direction 

(psi). 

5r2 • • • • Static normal stress acting on rock in radial direction 

(psi)~ 

ral. • • • Static shear stress acting axially along anchor (psi). 

t.2 • • . • Static shear stress acting axially along rock (pd). 

Gi • • • .. Vibratory stress incident on ~hell-to-rock interface (psi). 

Gvl ..... Vibratory normal stress reflected into rock (psi). 

~l .. • • • Vibratory shear stress reflected into rock (psi). 

• • • • Angle of incidence 

• • • • Vibratory normal stress tra.nJSmi tted into anchor 

• • • • Vibratory shear stress transmitted into anchor 

(psi). 

(psi). 
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APPENDIX I 

(Continued) 

• • • • Norma.l stress (psi). 

•••• No:rm.al strain (microstrain). 

. . • • Peak strain-amplitude (microstra.in) • 

. . . • Strain difference in absolute values, or in percent • 

dE • • .. • Voltage difference a.t transducer output (volt) • 

. . .. . Elec.trical resistance of atrain gage (ohm). 

Rs •• n • Electrical input resistance of transducer circuit (ohm). 

• • • • Gage Factor for strain gage (constant). 

I • • .. • Current input to transducer circuit (amp. ) • 

s • • • • Spring StiffneBs (lb./microstraln). 

• • • tJ. Spring Stiffness of bolt (lb./microstrain). 

. . . • Spring Stiffness of rock (lb./microstrain). 

a . . . • Area of cross-section of cylindrical reference body 

Eb •• Vibrational energy in bolt (in~-lb. x 10-6 ). 

. . • • Vibrational energy in rock 

K •••• Constant (see reference 21). 

c d • • • Absorption Constant (see reference 21). 

r • . • u • Distance from sho~ source to the rock sensor RG-I 

X • • • .. Distance from shock source to bolt sensor (ft. ) • 

e . . .. • : Base of natural log~ri thm. 

2 
(in. ) • 

(ft.). 
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APPENDIX II 

DISCUSSION OF DIFFICULTIES ENCOUNTERED DURING EXPERIMEN!ATION. 

A. Difficulties in Construction of Bolt-Sensors. 

From indications conveyed in the literature (3), it was assumed that 

mounting of a single strain gage on each bolt would be sufficient in or

der to obtain reliable readings. Thus, three rock bolts were initially 

prepared with one strain gage mounted on each in a position for sensi

tivity to axial strain. For their mounting, Eastman-910 cement was 'US

ed, with proper treatment of the gage and the placement area of the bolt 

prior to attaching the gagesu Aft~r the recommended drying period, the 

bolts we.re tested for proper gage response. A copper-foil was wrappa:l 

around the gage position to provide electronic shielding (see Fig. 4). 

The space between the shield and the bolt shank was then filled with 

wax having dielectric properties, being poured in at a temperature of 

150° F. As was found later, the wax, or the wax at this temperature 

state, must have interfered with the bonding cement in that proper re

sponse of the gages was disturbed. For example, during the use of these 

bolts at the test site, two of the gages exhibited a continu~drifting 

effect on the strain indication, when static-strain readings were taken. 

In spite of this, the bolt sensors showed a prompt response to dynamic 

strain waves. Therefore, they were employed for the $hort preliminary 

testing period, i.e., the initial 18 test-shots, to permit the prelimi

nary adjustments and coordination of recording equipment. When no ex

planation other than bonding failure could be found during this period, 

the bolts were dismounted and checked for their stress-strain response. 

Again, drifting and discontinuities occurroo in the strain data observed.. 

On removing the copper-shield and the wax-coating, in order to visually 
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(Continued) 
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inspect the gage bond, it was observed that the gages had peeled off the 

shank, toqether with the wax. 

It was decided to substitute an epoxy for the wax, and Du Pont Duco

Cement for the Eastman--910 cement, in the construction of the bolt sen

sors. Also, the readings from the initial single strain gages had shown 

some influence from bending moments when the installed bolts were rotat

ed. In order to exclude this disturbance and possible influences from 

temperature variations, it was felt necessary to find another strain

gage arrangement. 

After various considerations a design used by Stefanko (1, 10) was 

accepted, because it seemed to be the most promising in fulfillinq the 

abovementioned requirements. It also maintained the same electrical re

sistance and the same gage factor for both static and dynamic testing 

conditions. Thus, it could be used in the already developed transducing 

circuits without any a lterations. The design was applied as described by 

Fig. 4 and Figo s. No serious inconsistency in its perf ormance had been 

observed throughout the experiments. 

B. Difficulties in Obtaining Data-Records. 

Considerable time was s pent in eliminating ele ctronic noise which re

stricted the clarity of oscilloscope traces. The dry-cell batteries 

were continuously checked, and the automobile-batteries were recharged 

before each testing series to accomplish this aim. Most of the noise 

wa s found to come f rom the cable connector s that were exposed t o t he 

humidity inside the mine. Insulation provided by a wrapping of electri

cal insulating tape decreased the noise effects considerably, but direct 
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(Continued) 

drying of the connectors by use of an electrical hot-air blower was 

necessary in some cases. 
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The production of photographs from oscilloscope traces presented 

problems. For some events the triggering mechanism of the oscillo

scopes failed. It was found that a major difficulty was the adjusting 

for proper screen-illumination and trace-intensity whenever blasthole 

positions were changed. Due to the design of oscilloscope~a change in 

trace-sensitivity had the effect of an automatically opposite change of 

trace-intensity. Because of this feature, in many cases, the intensi

ties of sections of recorded traces became faint. Another negative in

fluence on the su:ecess in photographing was the incx>nsistency of the 

quality of the Polaroid films which frequently exhibited a lack of de

veloper gelatin. This had the effect that occasionally parts or all of 

a photograph remained undeveloped after removal from the camera. 
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APPENDIX III 

A. RCX:X-BOLT PROPERTIES. 

Bolt: 

Bolt Length 60 in .. 

Sm;.,nk: Diameter 3/4 in,. 

Yield Point 58,000 psi. 

Ultimate Strength 91 000 psi. , 
· Minimum Elongation 13 % in an 8-in. length. 

Thread Rolled thread of 3/4 in. diameter, 

right hand. 

Threaded Length 8.2 in., with 10 threads per inch. 

Head Forged square head with forged neck 

and flash. 

Anchor: 

Wedge-and-leaf type, with two leaves on bail, for use in bore-

hole~ with a diameter of 1- 3/8 in. 

Carrier Plate: 

Size 
3 

6x6x3/8 in.. 
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APPENDIX III 

B. COMPILATION OF RECORDED DATA FOR CALIBRATION OF' BOLT SENSORS. 

Bolt BB-I Bolt BB-II 

Load Strain Strain Load Strain .·.Ptrain 
(lb) (micro- (micro- (1b) (micro- (micro-

strain) strain") strain) ~Strain) 

Loading Unloading Loaging Unloading 

0 0 0 0 0 -3 
200 3.8 36 200 11 9 
400 83 78 400 48 45 
600 115 106 600 87 82 
.800 149 142 800 125 118 

1000 183 168 1000 159 154 
1200 218 206 1200 200 188 
1400 254 240 1400 236 226 
1600 291 274 1600 273 26~ 

1800 324 311 1800 309 299 
2000 360 347 2000 346 335 
2200 .398 .382 2200 389 372 
2400 435 416 2400 420 407 
2600 465 452 2600 461 444 
2800 500 487 2800 49.3 480 
.3000 5.36 522 .3000 532 517 
3200 572 559 3200 572 555 
.3400 606 598 .3400 604 592 
3600 644 632 .3600 640 626 
.3800 679 665 .3800 677 666 
4000 714 700 4000 716 701 
4200 746 738 4200 751 740 
4400 783 780 4400 792 777 
4'600 818 810 4600 826 Bl4 
4800 850 845 4800 862 851 
5000 885 885 5000 898 898 
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APPENDIX III 

(B. Continued) 

Bolt BB-III 13ol t BB-IV 

Load Strain Strain Load Strain Strain 
(lb) (micr~ · {micro- (lb) (micro- (micro-

strain) strain) strain) strain) 

Loadinsz Unloadinsz Loadinsz Unloadinsz 

0 0 -1 0. 0 2 
200 31 29 200 44 40 
400 66 64 400 81 75 
600 100 99 600 116 111 
800 134 132 800 150 145 

1000 172 168 1000 187 180 
1200 207 203 1200 222 217 
1400 242 237 1400 258 251 
1600 278 272 1600 292 286 
1800 313 308 1800 331 320 
2000 351 343 2000 367 357 
2200 386 380 2200 403 391 
2400 421 412 2400 439 426 
2600 457 449 2600 47·5 462 
2800 496 483 2800 511 498 
3000 529 519 3000 546 532 
3200 564 555 3200 580 567 
3400 600 590 3400 614 60~ 

3600 636 627 3600 650 640 
3800 671 663 3800 688 675 
4000 708 699 4000 721 709 
4200 742 733 4200 757 744 
4400 777 768 4400 793 780 
4600 816 806 4600 824 817 
4800 850 841 4800 860 854 
5000 887 887 5000 896 896 
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(Continued) 

C. EVALUATION OF THE CI\LIBRATION CONSTANT. 

Bolt BB-I: 

5000 lb./885 microstrain = 5.65 lb. per micros:!;rain, or 

885 microstrain/5000 lb. = 0.178 microstrain per lb. 

Bolt BB-II: 

50. . ..00 lb,./898 mj.crostrain = 5. 57 lb. per m!.crostrain, or 

898 -· micro.strain/5000 lb. = 0.180 microstrain per lb. 

Bolt BB-III: 

5000 lb,./887 microstrain = 5.64 lb. per microstrain, or 

887 micro.strain/5000 lb. = 0.177 microstrain per lb. 

Bolt BB-IV: 

5000 lb./896 microstrain = 5.58 lb. per microstrain, or 

896 microstrain/5000 lb. = 0.179 microstrain per lb. 

Average value: 5.61 lb. per microstrain ! 0.2 %. 
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APPENDIX IV 

RECORD OF S~TIC STRAIN READINGS. 

Strain Readings from Bolts 
Shot No. Time Blast;_ 

(hours) hole Bolt BB-I Bolt BB-II Bolt BB-IV 

st Instal-
1 Day~ lation: 
l0 .. 5o 69? 
11.40 674 

1 12 .. 30 BH-I Photograph No. 1 
13.30 658 

2 15 .. 00 BH-I Photograph No. 4 
15,. 07 645 

3 16 .. 00 BH-III Photoqraph No. 7 
16 .. 30 631 

5t~ay: 
Instal- Instal-
lation: lation: 

10.25 615 
10 ... 40 698 
10.55 698 
11 .. 20 667 
11~22 684 
11.24 612 

4 11.,53 BH-III Photographs No. 10, 11, 12 .. 
12 .. 09 576 
12 .. 12 672 
12 .. 14 652 
13 .. 13 545 
13.15 669 
13 .. 17 570 

s 13.45 BH-III Photographs No. 13, 14, 15. 
13 .. 55 641 
13.58 665 
14 .. 00 560 

6 14.20 BH-III Photographs No. 16, 17, 18. 
14c37 640 
14.40 659 
14 .. 43 5~1 

7 15, 00 BH--III Photographs No . 19, 20, 21. 
l5nl8 635 
15 .. 20 657 
15.,22 545 

8 15.45 BH-III Photographs No. 22, 23, 24. 
15 ... 58 633 

15 .. 59 653 
16.00 527 

9 16 .. 15 BH-III Photographs No. 25, 26, 27. 
16 .. 32 630 
16 .. 3~ 651 
16 ... 35 525 
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(Continued) 

Strain Rea.dings from Bolts 
Shot No. Time Blast-

(hours) hole Bolt BB-I Bolt BB-II Bolt BB-IV 

10 16.45 BH-II Photographs No. 28, 29, 30. 
17.00 530 
17.02 650 
17.03 521 

6t1'tnay: 
13.04 528 
13.10 647 
13.13 470 

11 13 ... 45 Bii:-III Photographs No. 31, 32, 33. 
14.17 526 
14.22 642 
141>25 470 

12 14.45 BH-II Photographs No. 34, 35, 36 .. 
15.01 525 
15.04 640 
15.06 465 

13 15o20 BH-I Photographs No. 37, 38, 39. 
15.40 523 
15.,45 637 
15.48 460 

Dis-

8thDay: 
mounted. 

11..59 515 
12.02 629 

14 12.30 BH-III Photographs No. 40, 41, 42. 
12.45 519 
12.47 624 

15 13.10 BH-I & BH-III Photographs No. 43, 44, 45 .. 
13 .. 26 515 
13.29 621 

16 13.55 BH-I & BH-II Photographs No. 46, 47, 48. 
& BH-III 

14.26 510 
14.28 615 

17 14.50 BH-I & BH-II Photographs No. 49, so, 51 .. 
& BH-III 

15.,23 509 
15.26 612 

Installation 

12t~y: 
of 
Bolt BB-III: 

9.33 708 
9.35 505 
9.38 587 
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(Continued) 

Strain Readings from Bolts 
Shot No~ Time :Sl-ast-

(hours) hol$ BOlt BB-III Bolt BB-II Bolt BB-IV 

18 10 .. 09 BH-I Photographs No. 52 1 53, 54,. 
10.33 505 
10 .. 35 577 
10,38 705 

19 11.09 BH-I & BH-III Photographs No. 55 1 56, 57,., 
12.10 500 
12 .. 11 557 
12 .. 14 706 

20 12.3S BH-I & BH~III Photographs No. 58, 59, 60. 
12n58 498 
13.03 522 
13.05 699 

21 13.20 BH-I & BH-III Photographs No. 61, 62, 63e 
13.43 496 
13.45 516 
13.48 687 

22 14.10 BH-I Photographs No" 64,. 65, 66. 
14.22 344 
14 .. 25 436 
14 .. 27 675 

15th])4.y: 
12 .. 22 
12 .. 25 
12o 4.7 

23 13,04 BH-I 
13 .. 19 
13 .. 21 
13 .. 23 

24 13.40 BH-I 
13,56 
13.58 
14.00 

l6thDay: 
9.17 
9.20 
9.24 

25 9"45 BH-I 
9,.56 
9.59 

10.01 
26 10,.15 BH-II 

10.32 

657 
470 

492 
Photographs No., 67, oa, 69. 

485 
461 

642 
Photographs No. 70 1 71,. 72. 

480 
454 

624 

476 
448 

623 
Photographs No. 73 1 74, 75. 

474 
442 

609 
Photographs No. 76, 77, 78. 

470 
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(ContinU$d) 

Strain Readings from Bolts 
Shot No. Time B1ast-

27 

28 

29 

30 

(hours) hole Bolt B~III Bolt BB-II Bolt BB-IV 

10.34 439 
10 .. 36 603 
10 .. 50 BH-III Photographs No. 79, 80, 81. 
11.03 . 461 
11.05 435 
11.07 599 
11.20 BH-,II & BH-III Pho-tographs No. 82, 83, 84. 
11 .. 35 457 
11,36 427 
1LI38 596 
11~55 B&-IV Photographs No. 85, 86, 87~ 

12 .. 07 453 
12..,08 418 
12,10 569 
12p30 BH-,IV & BH-,I Photographs No,. 88, 89, 90. 
12.39 448 
12o40 413 
12 .. 42 5"58 
nd 

32 Day: 
426 15v00 

15.09 
15.10 

274 Dismounted. 
409 Dismotinted. 

Dismounted. 
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RECORDING-EQUIPMENT OPERATING-DATA. 

Transducer Current (rna) 
Shot Trace Sensitivity (vertical) (mv/cirn) 
No. Horizontal Sweep (ms/ em) 

SENSORS 
RG-I RG-A Bolt BB-I Bolt BB-II Bolt BB-IV 

1 25 Not 25 Not employ- Not employ-
0.02 employ- 0.20 ed ed 
1 5 

2 25 25 25 
_ ,_ _, _ 

0.5 0.02 o.os 
2 5 5 

3 25 25 25 _,_ -"-
0.05 0.05 0.05 
2 5 5 

4 25 25 25 25 25 
0 .. 10 0.05 0 .• OS 0.05 0.05 
2 5 5 5 5 

5 25 25 25 25 24 
0.10 o.so o .. os o.os 0.05 
1 5 2 2 5 

6 25 25 25 25 25 
0.10 0.50 0.05 o.os o.os 
1 5 5 5 5 

7 25 25 25 25 25 
0.10 0.50 Oa05 0.05 0.05 
1 5 5 5 5 

8 25 24 25 25 25 
.. 0 '" 10 o. so o.os o.os o.os 

1 2 5 5 5 

9 •25 25 25 25 25 
0 .. 10 0.50 o. os o.os o.os 
1 2 5 5 2 

10 25 25 25 25 25 

OwlO o. 50 o.os o.os 0.20 

1 2 5 5 2 
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(Continued) 

Transducer Current (rna) 
Shot Trace Sensitivity (Terti cal) (mv/an) 
No. Horizontal Sweep (me/em) 

SENSORS 
RG-I RG ... A Bolt BB-I Bolt BB...II Bolt BB...IV 

11 25 25 25 25 25 ~i'. ' 

0.20 0.50 o.os o.os 0.20 
1 2 2 2 2 

12 25 25 25 25 25 
0.20 0.50 o.os 0.05 0.20 
1 2 2 2 2 

13 2.4 24 24 24 25 
0 .. 20 0.50 0.05 0.05 0.20 
1 2 2 2 2 

Dismounted. 
14 25 25 25 25 

a. so 0.20 0.05 0.10 
1 2 2 2 

15 25 25 25 25 
0 .. 50 0.10 o.os 0.10 
1 2 2 2 

16 25 25 25 25 
0.50 0.10 0.05 0.10 
1 2 2 2 

17 25 25 25 25 
o. 50 0.10 0.05 0.10 
1 2 2 2 

Remounted: 
Bolt BB...III 

18 25 25 25 25 25 
o. 50 o. 50 0.05 0.05 o.os 
1 2 2' -. 2 2 

19 25 25 25 25 
o. 50 0.20 0.05 0.05 
2 2 2 2 

20 25 25 25 25 25 
0.50 o. 20 o.os o.os o.os 
1 2 2 2 2 
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(Continued} 

Transducer Current (ma} 
Shot Trace Sensitivity (vertical} (mT/cm} 
No. Horizontal Sweep (ms/cm) 

SENSORS 
RG-I RG-A Bolt BB-III Bolt BB-II Bolt BB-IV 

21 24 24 24 24 24 
0.50 0.20 0.02 0.02 0.02 
5 5 5 5 5 

22 25 24 24 24 24 
0.50 0.20 0.05 0.05 0.02 
5 1 2 2 1 

23 25 25 25 25 25 
0.50 0.20 o.os o.os 0.02 
5 1 2 2 1 

24 25 25 25 25 25 
o. 50 0.20 0.05 0.05 0.01 
2 1 2 2 1 

25 25 25 25 25 25 
o.so o. 20 o.os 0.05 0.02 
2 1 2 2 1 

26 25 25 25 25 25 
0.50 0.20 o.os o. 05 0.02 
2 1 2 2 1 

27 25 25 25 25 25 
o. 50 o. 20 0.05 o. 05 0.02 
2 1 2 2 1 

28 25 25 25 25 25 
o. 50 o. 20 0.05 0.05 0.02 
2 1 2 2 1 

29 25 25 25 25 25 
o.so 0.20 0.05 0.05 0.02 
2 1 2 2 1 

30 25 25 25 25 25 
2.00 o. 50 0.20 0.20 0.02 
2 1 2 2 1 
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EVALUATION OF PEAK-S'm.AINS FRCM OOCILLOOCOPE-TRACES-

The peak-strains determined by the investiqation were computed from 

the followinq formula (21): 

7. 

whereCp =the peak strain-deflection (microstrain), 

Rq = 495 ohm, 

Rs ::a 3 100 ohm,. 

sm ... 3.46, 

I • the current in milliampe listed in data record of Appendix V, 

dE = the voltaqe output in mv, as determined from the peak ampli-

tudes of the traces in em and the vertioal trace-sensitivi

ties in mv/an, also listed in Appendix V. The trace-ampli

tudes were read directly from the photoqraphs, where the dis

tance between tlle qrid lines represented the lenqth of 1 em, 

as used for this interpretation. 

Example: The resporuse of Rock Sensor RG-I for Shot No.. 3 in Appendix VI 

gave 

dE= 3.00 cm~o.so mv/cm • l.SQ mv. 

Therefore, the peak strain-amplitude had 

~""1.50 nrv'•(495+3100) ohm f 3.46 .. 49~ olun-3100 ohm•0.25 ma=4.08 micro 

strain. 

Peak strairus for all teste a.re included in the tables that follow: 
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(Continued) 

A. Rock Sensors: 

SENSORS 

Shot 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15* 
16* 
17* 
18 
19* 
20* 
21* 
22 
23 
24 
25 
26 
27 
28* 
29 
30* 

Photograph 
No. 

RG-I 
Trace Peak- Peak-Strain 
Amplitude 

(em) (microstrain) 

No 
No 

9 
12 
14 
17 

traces gained 
traces gained 

3.00 
4 .. 00 

4.08 
10.80 

gained 
qained 

21 & 20 
24 & 23 
27 & 26 

30 
33 &-. 32 
36 & 35 
39 & 38 
42 & 41 
45 & 44 
48 & 47 
51 & 50 
54 & 53 
57 & 56 
60 & 59 
63 & 62 
66 & 65 
69 & 68 
72 & 71 
75 & 74 
78 & 77 
81 & 80 
84 & 83 
87 & 86 
90 & 89 

No traces 
No traces 
3.12 
3.97 
4.50 
3.00 
3.00 
1. 70 
4.00 
1.30 
2.00 

8~. 16 

10.88 
12.23 
18.16 
16 .. 40 

9.26 
22.70 
17.70 
27.20 

No traces gained 
0.15 2.02 
2.20 30.00 
No traces 
3.20 
1.00 
1. 60 
2. 55 
2.80 
3.50 
1. 50 
1.00 
1. 30 
4.73 
0.67 

gained 
43.60 
13.60 
21.80 
34.50 
38.10 
47.70 
20.40 
13.60 
17.70 
64.40 
36.50 

RG-A 
Trace Peak- Peak-Strain 
~litude 

(em) (microstrain) 

No traces 
No traces 
0.40 
0.45 
0.10 
0.68 
0.81 
No traces 
0.35 
0.35 
o. 50 
1.10 
0 .. 90 
1.00 
o. 60 
0.60 
0.30 
0.40 
0.92 
0.70 
0.80 
0.30 
o.8o 
0.91 
0.60 
0.91 
4. 00 
o.8o 

gained 
gained 

5. 45 
6.13 
1.36 
9.30 

11.00 
gained 

4.80 
4.80 
6.81 
6.00 
2.45 
2. 72 
1.63 
8.17 
1.64 
2.18 
5.22 
3.99 
4.36 

16.35 
4.36 
4.94 
3.27 
4.94 

21.80 
10.90 

Note: * indicates test shots made with multiple chargee. 
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(Continued) 

B. Bolt Sensors: 

SENSORS 
Bolt BB-I Bolt B~II Bolt B~IV 

Shot Photograph Trace Peak- Trace Peak- Trace Peak-
No~ No. Peak- Strain Peak- Strain Peak- Strain 

Amplitude Amplitude Amplitude 
(em) (micro- (em) {micro- {em) (micro-

strain) strain) strain) 

1 No traces gained 
2 4 0.60 0.82 No traces gained 
3 7 0.40 o. 55 No traces gained 
4 10 & 11 0.20 0.27 0.20 o. 27 No traces gained 
5 13 & 14 No traces qained o. 40 o. 56 
g 16 & 17 0.18 0.24 0.20 0.27 0.80 1.09 
7 19 & 20 0.12 0.16 0.12 0.16 0.92 1.25 
8 22 & 23 0.07 O .. l.D 0.10 0.13 0.70 0.95 
9 25 & 26 No traces .gained 0.80 l. 09 

10 28 & 29 D~2a 0 .. 27 a. 20 tl.27 0.33 l. 80 
11 31 & 32 0.18 0.22 0 .. 16 0.22 0.15 0.82 
12 34 & 35 0.15 0 .. 20 0.15 0.20 0.18 0.98 
13 37 & 38 0.30 o. 41 0.18 0.25 0.25 1.35 
Bolt BB-I substituted by 

Bolt BB-III: 
14 40 & 41 0.,40 0.54 0.36 0.49 No traces gained 
15* 43 & 44 0.10 0 .. 14 0.30 0.41 0.10 a. 27 
16* 46 & 47 0.10 0.14 0.15 0.20 0.60 1.63 
17* 49 & 50 0.18 0.25 0.30 a. 41 o. 60 1.63 
18 52 & 53 0.60 0.82 0.29 0.40 0.15 0.20 
19* 55 & 56 o .. 20 o. 27 No traces gained 0.10 0 .. 14 
20* 58 & 59 o .. 30 0.41 0.28 o. 38 0.10 0.14 
21* 61 & 62 o. 51 0.72 0.73 o. 41 0.30 0.17 
22 64 & 65 o. 52 0 .. 74 o. 30 0.43 0.40 o. 23 

23 67 & 68 0.41 0.56 0.29 0.40 0.20 0.11 
24 70 & 71 0 .. 41 o .. 56 0.25 0.34 1.00 0.27 

25 73 & 74 0.37 o. 50 0.13 0.18 0.30 0.16 

26 76 & 77 0.30 o. 41 o. 60 0.82 0.40 0.22 

27 79 & 80 0.20 0.27 o. 30 o. 41 0.25 0.14 

28* 82 & 83 o. 20 0.27 0.50 o. 68 o.ol 0.01 

29 85 & 86 2.00 2.72 0.40 0.54 0.01 0.01 

30* 88 & 89 0.20 1.10 a. 30 1. 64 0.40 0.22 

Note: * indicates test shots with multiple charges. 
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EX'mAPOI.ATION OF DYNAMIC PEAK-Sl'RAINS AND COMPUTATION OF ENERGY OF 

ROCK-VIBRATION. 

A. Formula for Peak-Strain Extrapolation. 

If a strain amplitude decays according to the law (21) 

80 

-cr 
tpr = (K/r) e , a. 

it will haTe the amplitude f. at the distance r and the cSlllPlitude £ pr ~ 

at the distance x from the shock source. If r is the distance from the 

shock source to the rock sensor and x is the distance from the shock 

source to a bolt sensor, the equations pertinent to those distances can 

be divided one by the other: 

r (K/x) .-ex {.,px --::a 
(K/r) -cr e 

• 

Therefore we can solve for the strain amplitude in the rock at a bolt 

location, x, in terms of the amplitude measured at a rock sensor and 

the coordinated travel distances: 

r 
.C = t - ec(r-x) • 9. l-px pr 

X 

The value of C in this equation is equivalent to the value of f.. in 
~ p 

Equation 7. 

Example: For Shot No. 3, the strain amplitude in the rock at the l oca

tion of P~lt BB-I, as a function of the amplitude recorded by the Rock 

Sensor RG-I, was 

21.2 0.026(21.2-21.8) 
4. 08 (--} 2. 27 = 3. 90 microstrain. 

21.8 
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(Continued) 

B. Determination of the Spring-Stiffness, Sr, for the Energy Evaluation. 

One can calUulate the Spring Stiffness for any material, from HoOke's 

Law. The force, Sr' necessary to strain a cylindrical body of a l-in. 

length and 3/4-in .. diameter for the a.rttount of 1 microstrain in the axial 

direction would be as follows: 

If 
G = tE , 10. 

then 

S = b a ::: c E. a • 11. 
r 

6 Since the Young's Modulus, E, for the rock was SxlO psi, and the cross-

sectional area, a, was 0.441 in. 2 , we obtain 

S = 3.5xl06 (0.44lxl06 )xl = l.SSxlo-6 lb./microstrain. 
r 

c. Calculation of Vibrational Energy, E , in the Rock. 
r 

The vibrational energy in the rock medium was calculated by applying 

Equation 5~ By substituting into this equation the numerical values of 

c observed at the Rock Sensor RG-I and the numerical values of£ as 
~pr px 

obtained from Equation 9., the energy of vibration, Er, was computed for 

the location of RG-I and for each of the bolt locations, respectively. 

Pertinent data are included in the accompanying tables. 
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(C. Continued) 

Shot Blasthole Bolt ~ r X c(r-x) ec(r-x) 
Epx E 

-~o. No. Position r r 

(in..-lb~ 
x lo-6 > 

3 BH-III 4. 08 21.2 12~9 
BB-I 21 .. 8 -0.016 0.983 3.90 11.. 8 
BB-II 24.2 -0.078 0.924 3.29 8.,4 
BB-IV 27.8 -0.173 0.840 2. 60 5. 2 

4 BH-III 10.80 21.2 83g9 
BB-! 21.8 -0.016 0.983 10.32 80.0 
BB-II 24.2 -0.078 0.924 8.74 59g0 
BB-IV 27.8 -0.173 0.840 6.91 37 .. 0 

5 BH-III No data gained 

6 BH-III 8.99 21.2 62e6 
BB-I 21.8 -0.016 0.983 8. 60 57.4 
BB-II 24.2 -0.078 0.924 7.27 41 ,. 0 
BB-IV 27.8 -0.173 0.840 5.76 25.7 

7 BH-III 8.49 21.2 55.8 
BB-I 21.8 -0.016 0.983 8.11 51.1 
BB-II 24.2 -0.078 0.924 6.87 36.7 
BB-IV 27.8 -0.173 0.840 5.44 22.9 

8 BH-III 10.88 21.2 84.5 
BB-I 21.8 -0.016 0.983 10.40 80.6 
BB-II 24.2 -0.078 0.924 8.80 69.8 
BB-IV 27.8 -0.173 o. 840 6.96 37.6 

9 BH-III 12.23 21.2 116.0 
BB-I 21.8 -0.016 0.983 11.70 106.1 
BB-II 24.2 -0.078 0.924 9.90 77.0 
BB-1V 27.8 -0.173 0.840 7.84 47.7 

10 BH-1 8.16 13.2 51.6 
BB-I 14.0 -0.021 0.980 7.55 26.5 
BB-II 19.3 -0.159 0.854 4.77 17.6 
BB-IV 22.4 -0.257 o. 779 3.75 10.9 

11 BH-1II 16.40 21.2 216.0 

BB-1 21.8 -0.016 0.983 15.67 190.0 

BB-II 24.2 -0.078 0.924 13.28 136.5 

BB-IV 27.8 -0.173 0.840 10.50 81.5 
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(C. Continued) 

Shot Blasthole Bolt ~ r X c(r-x) ec(r-x) ~X Er 
No. No .. Position r 

(in.-lb. 
x Io-6) 

12 BH-III 9,26 13.2 66 .. 0 
BB-I 14.0 -0.021 0.980 8.55 56.6 
BB-II 19.3 -0 .. 159 0.854 5.41 22.7 
BB-IV 22.4 -0.247 0.779 4. 24 14.0 

13 BH-II 22.70 9.5 400.0 
BB-I 10.2 -0.018 0.980 20.70 332.0 
BB-II 13.2 -0.096 0.906 14.80 170.0 
BB-IV 16.6 -0.158 0.830 10.80 83.6 

14 BH-III 17.70 21.2 243.0 
BB-III 21.8 -0.016 0.983 16.90 222.0 
BB-II 24.2 -0.078 0.924 14.32 159.0 
BB-IV 27.8 -0.173 o. 840 11.30 99.4 

18 BH-II 30.00 9.5 698.0 
BB-III 10.2 -0.018 o. 980 27.40 581.0 
BB-II 13.2 -0.096 0.906 19.55 269.0 
BB-IV 16.6 -0.158 0.830 14.20 156.0 

22 BH-II 21.80 9.5 368.0 
BB-III 10.2 -0.018 0.980 19.90 307.0 
BB-II 13.2 -0.096 0.906 14.20 156.0 

BB-IV 16.6 -0.185 0.830 10.40 81.0 

23 BH-II 34.5 9.5 922.0 
BB-III 10.2 -0.018 o. 980 31.50 768.0 
BB-II 13.2 -0.096 0.906 22.50 396.0 

BB-IV 16.6 -0.185 0.830 16.36 208.2 

24 BH-II 38.10 9.5 11 24.0 
BB-III 10.2 -0.018 0.980 34.80 935.0 

BB-II 13.2 -0.096 0.906 24.80 476.0 

BB-IV 16.6 - 0.185 0.830 18.61 2 68. 0 

25 BH-II 47.70 9.5 1768.0 

BB-III 10.2 -0.018 0.980 43.60 1471 ., 0 

BB-II 13.2 -0.096 0.906 31.00 744 .. 0 

BB-IV 16.6 -0.185 0.830 22.60 395.0 

26 BH-I 20.40 13.2 322.0 

BB-III 14.0 -0.021 0.980 20.10 312.0 

BB-II 19 .. 2 -0.159 0.854 11.90 109.7 

BB-IV 22.4 -0.247 0.779 9.34 67.5 
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(C. Continued) 

Shot Blastho1e Bolt ~ r X c(r-x) 9 c(r-x) 
cpx Er 

No. No. Position r 
(in.-1b~ 
x 10-6) 

27 BH-III 13.60 21.2 143.1 
BB-III 21.8 -0.016 0.983 13.00 l3LO 
BB-II 24.2 -0.078 0.924 11.00 93.5 
BB-IV 27.8 -0.173 0.840 8.70 so,. 9 
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COMPUTATION OF ENERGY OF BOLT-VIBRATION. 

A. Determination of the Spring Stiffness, Sb, for Bolts. 

As was done in Appendix VII, B., the body size and shape of a bolt 

element of l-in. length was taken as reference for the evaluation of 

the vibrational energy. Using a Young's Modulus for steel rock-bolts 

of 3.2 x 107 psi, we obtain 

sb = 3.2xl07x(0.44lxl06 )xl- 14-13xl0-6 lb./microstrain. 

B. Calculation of Vibrational Energy, Eb, in Bolts, 

For computation of vibrational energies in the bolt sensors, J:qua

tion 5 was adjusted by substituting the numerical values of C , i.e., 
p 

the peak strain amplitudes recorded from the bolt sensors, and by use 

of the value for Sb as calculated above. The results are listed below: 

Shot No. 

2 
3 
4 
5 
6 
7 
8 
9 

Blasthole 
No. 

Bo1 t BB-I 

~ Eb 

BH--II 
BH--III 
BH-III 
BH--II I 
BH--III 
BH-III 
BH-III 
BH--III 

0.82 
0.55 
0.27 

0.24 
0.16 
0.11 

BH-I 0.27 
BH--III 0.22 
BH--I 0. 20 
BH-II 0.14 

4. 7 5 
2.12 
o. 53 

0.41 
0.18 
0.07 

0.52 
0.34 
o. 31 
1.17 

10 
ll 
12 
13 
Bolt 
14 
18 
22 
23 
24 
25 
26 
27 

BB-III substituted for BB-I: 
2.05 
4.52 
~.88 

2.20 
2. 20 
1.79 
1.17 
0.52 

BK-III 0. 54 
BH-II 0.82 
BH--II 0.74 
BH-II O. 56 
BH-II 0.56 
BH-II 0.. SO 
BH-I 0.41 
BH-III 0.27 

~LT SENSOR 
Bolt BB-II 
~ Eb 

0.27 

o. 27 
0.16 
0.14 

0.27 
o. 21 
0. 2 0 
0.25 

0.49 
0.40 
0.43 
0.40 
o. 34 
0.18 
0.82 
o. 41 

0.52 

0.52 
0.18 
0.14 

0.52 
0. 33 
0 ,31 
0.43 

l. 70 
1.17 
l. 31 
1.17 
0.82 
0.22 
4. so 
1.18 

Bolt BB-I V 
Cp Eb 

o. 56 
l. 09 
l. 25 
0 .95 
l. C9 
l. 80 
0.8 2 
0.98 
1.35 

C. 20 
0. 2 3 
0.11 
0. 27 
0.16 
0 . 22 
0.14 

/. . ~; 6 

8. 22 
11. 05 

6. 44 
8. 22 

22 . ~~G 
4- t5 
6. 8 rJ 

12.83 

0 . 38 
0. 08 
0 .52 
0.18 
0.34 
0.14 

-6 
Note: Eb stands for the vibrational energy with the dimenaion inrlb.xlO • 
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